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ABSTRACT: Environmental drivers of disease susceptibility, 

referred to as the exposome in its totality, are poorly understood. 

Measuring the myriad of chemicals that humans are exposed to is 

immensely challenging and identifying disrupted metabolic 

pathways is an even more complex task. Here, we present a novel 

technological approach for the comprehensive, rapid and 

integrated analysis of the endogenous human metabolome and the 

chemical exposome. By combining reverse-phase and hydrophilic 

interaction liquid chromatography and fast polarity switching, 

molecules with highly diverse chemical structures can be analyzed 

in 15 minutes with a single analytical run. Standard reference 

materials and authentic standards were evaluated to critically 

benchmark performance. Highly sensitive median limits of 

detection with 0.04 µM for >140 quantitatively assessed 

endogenous metabolites and 0.08 ng/mL for the >100 model 

xenobiotics were obtained. To prove the dual-column approach’s 

applicability, real-life samples from sub-Saharan Africa (high 

exposure scenario) and Europe (low exposure scenario) were 

assessed in a targeted and non-targeted manner. Our LC-HRMS 

approach demonstrates the feasibility to quantitatively and 

simultaneously assess the endogenous metabolome and the 

chemical exposome for the high-throughput measurement of 

environmental drivers of disease. 

INTRODUCTION 

Since the 'exposome' first emerged as a new paradigm in 

environmental health describing the entity of all environmental 

exposures enclosing lifestyle factors throughout a human’s lifespan 

(Wild 2005), its scope has further been expanded. In recent 

definitions, endogenous metabolites involved in biological 

responses (i.e. the endogenous metabolome) that have been 

triggered by external exposures are typically included (Miller et al. 

2014; Rappaport et al. 2014).   

Comprehensive liquid chromatography high resolution mass 

spectrometry (LC-HRMS)-based approaches hold the promise to 

more comprehensively elucidate the exposome in future 

exposome-wide association studies (ExWAS). A broad spectrum of 

small molecules with diverse chemical properties ranging from 

endogenous metabolites to environmental xenobiotics can be 

determined with this technique. External stressors including 

xenobiotics and environmental changes are measured at the same 

time as phenotypical changes in response to these exposures. Thus, 

LC-HRMS is an ideal platform for developing more holistic methods 

to study the exposome (Vermeulen et al. 2020). Its applicability to 

investigate the impact of environmental toxicants on the 

endogenous metabolome has previously been showcased (Warth 

et al. 2017; Johnson et al. 2012). Metabolomics has been applied in 

large metabolome- wide association studies (MWAS) to investigate 

biological mechanisms of diseases, their diagnosis and treatment. 

Several studies succeeded in deriving biological effects from their 

data, although data interpretation remains a challenge (Garratt et 

al. 2018; Reinke et al. 2017; Ganna et al. 2014; Rhoades et al. 2017; 

Hu et al. 2021). The approach plays also an important role in 

biomarker discovery and personalized medicine (Jacob et al. 2019). 

However, the study of external stressors and complex 

environmental exposures is clearly less explored and constitutes 

the next frontier in the current era of omic-scale exposure 

measurement and systems toxicology. 

Targeted multi-analyte methods are commonly used for human 

biomonitoring (HBM) of xenobiotics, although most approaches 

assess only a relatively limited number of different exposure 

markers or chemical classes (Prasain et al. 2010; Vela-Soria et al. 

2011; Azzouz et al. 2016; de Oliveira et al. 2019; Kolatorova 

Sosvorova et al. 2017; Braun et al. 2018; Šarkanj et al. 2018). 

However, recent initiatives aim to expand the coverage of such 

multi-analyte and multi-class HBM methods to a larger range of 

xenobiotics as exemplified e.g. Jamnik et al. (2022) who 

simultaneously assessed more than eighty chemicals with known 

affinity to the estrogen receptor in relevant biological specimen 

(blood, urine and breast milk).  

The vast physico-chemical diversity of xenobiotics implies also a 

widely varying toxicological effects of them on humans. The 

adverse impact of e.g. mycotoxins, a group of fungal food toxins, 

range from liver carcinogenicity (aflatoxins), nephrotoxicity 

(ochratoxin A), estrogenicity (zearalenone) to inhibition of protein 

synthesis and mitochondrial function (trichothecenes) (Marin et al. 

2013). Xenoestrogens may have an immense impact on hormone 

homeostasis and endocrine disruption, especially in critical time 

windows, since they interfere with the endocrine system, partly 

even at extremely low concentrations (Xu et al. 2017; Sofie et al. 

2014). Estrogenic chemicals occur for example naturally in plants 

(phytoestrogens) like genistein or daizein and synthetic estrogens 
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may be present in pharmaceuticals, insecticides and plasticizers 

(Paterni et al. 2017; Xu et al. 2017).  

Similar to meaningful population-based metabolome research, also 

exposomics requires large-scale studies for exposome-wide 

association studies to draw reliable conclusions. The suggested 

mean sample size on male fertility was estimated to be 2700 men 

(Chung et al. 2019). Hence, high throughput methods are urgently 

needed as time is a limiting factor in large-scale epidemiological 

investigations. In the field of metabolomics, efforts to increase time 

efficiency are a current priority (Rampler et al. 2021; Liu et al. 

2019). For example, the usefulness of a dual column approach to 

gain more information about the metabolome and lipidome within 

a short runtime was described by Schwaiger et al. (2019). 

The combined and comprehensive measurement of the 

metabolome and the exposome is challenging as the 

concentrations of metabolites, drugs, food constituents and 

environmental contaminants span over estimated ten orders of 

magnitude and highly diverse classes of chemicals (Bloszies et al. 

2018; Rappaport et al. 2014).  Here, we present a rapid high-

throughput workflow, combining the analysis of endogenous 

metabolites and multiple classes of xenobiotics in human urine and 

plasma. To cover polar compounds as well as the mostly non-polar 

xenobiotics, the approach utilizes a dual column approach with a 

reverse-phase (RP) and a hydrophilic interaction chromatography 

column (HILIC) being operated in parallel. To prove the power of 

the new method, the exposome coverage was evaluated based on 

more than 200 highly diverse analytes comprising endogenous 

metabolites and xenobiotics. The applicability to real-life samples 

was demonstrated by the analysis of urine samples of test sub-

populations from Nigeria and Austria.  

MATERIALS AND METHODS 

Chemicals 

A multi-analyte stock solution contained endogenous human 

metabolites (145 analytes) at 50 µM and xenobiotics including 

estrogenic compounds (106 analytes) at a concentration between 

5 – 5000 ng/mL (median 100 ng/mL) and was prepared in 

ACN/water (50/50; v/v) (Figure S1). In the context of this paper the 

estrogens are evaluated together with the xenobiotic substances 

and mentioned accordingly. In addition, 15 different isotopically 

labelled standards of xenobiotics and a separate 13C- labelled yeast 

extract (ISOtopic solutions, Vienna) were used as internal 

standards. A full list of all analytes is available in the Supporting 

Information (Table S1). A 24 h pooled urine sample obtained from 

a healthy female volunteer collected during one day after three 

days of a low xenoestrogen/polyphenol diet was chosen as model 

matrix in this study since urine is frequently used for assessing 

chemical exposure. Moreover, pooled human Li-Heparin plasma 

was acquired from Innovative Research (Novi, USA) as a second 

model matrix. Arylsulfatase/β-glucuronidase from Helix pomatia 

was purchased from Sigma-Aldrich (Vienna, Austria). All materials 

were stored at -80°C prior to extraction. The concentrations of all 

analytes (xenoestrogens, mycotoxins and endogenous estrogens) 

in the calibration standards (8 levels) are listed in the Supporting 

Information (Table S2). The remaining endogenous metabolites 

were present at concentrations between 0.001 µM - 10 µM at the 

same dilutions as the other analytes. 

Samples 

For the optimization of the eluent/column combination a solvent 

standard and a matrix-matched standard at a medium 

concentration range (Level 6; Table S2) were used. SRM1950 

(Metabolites in Frozen Human Plasma) and SRM3672 (Organic 

Contaminants in Smoker’s Urine) were purchased from the 

National Institute of Standards & Technology (NIST, Gaithersburg, 

USA). In addition, 24 h urine samples from a food intervention study 

performed in 2021 with four different individuals (2 female and 2 

male) collected at three different timepoints (3 different days) 

were tested. For details kindly refer to Oesterle et al. (2022). 

Furthermore, urine samples from Nigerian women sampled in 2016 

were investigated. This longitudinal sample set was already 

analyzed before on biomarkers of mycotoxin exposure (Braun et al. 

2022), therefore not all samples from the original study were 

available due to limited sample volumes. The sample set included 

77 spot urine specimens from four timepoints (morning and 

evening over two days) of 23 mothers. All samples were stored at -

80°C until analysis.  

Sample preparation 

During the whole sample preparation procedure, the samples were 

kept on ice. At first 200 μL urine were mixed with 20 μL internal 

standard mix (Table S3) and 20 μL of the 13C-labeled yeast 

metabolite extract. For the experiment to determine the best 

solvent/column combination no internal standard was used, 

therefore only 40 μL H2O were used instead of the internal 

standard mix. The samples were then vortexed. Afterwards, the 

samples were mixed with 760 μL of extraction solvent (ACN:MeOH 

(1:1, v:v)). After thoroughly vortexing and sonication on ice (10 

min), the samples were put on -20°C for 2 h and centrifuged at 

18,000 x g and 4°C (10 min) and 960 μL of the supernatant was 

transferred to a new tube. Then, the samples were evaporated in a 

vacuum concentrator (Labconco). The residues were reconstituted 

in 192 μL solvent (ACN/ water, 50:50, v:v), vortexed and centrifuged 

at 4°C for 10 min. Finally, the supernatants were transferred to 

HPLC vials and stored at -80°C until analysis. Moreover, matrix 

matched calibration standards for urine and plasma were prepared 

by reconstituting matrix extracted according to the sample 

preparation protocol with respective solvent standard solutions. 

SRM3672 was additionally treated with a β-

glucuronidase/arylsulfatase enzymes from Helix pomatia for 12 h 

at 37°C prior to extraction as the NIST certified reference values are 

given for deconjugated samples. This additional step was not 

performed for the other samples because the heat treatment 

would have disturbed measurements of endogenous metabolites.  

A non-deconjugated sample was prepared for the SRM material for 

comparison as well. 

Quality control measures 

As quality control samples, SRM 1950 in one to ten dilution and a 

solvent QC comprising all target analytes at 1 µM (metabolites) and 
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approximately 100 ng/mL (xenobiotics) were analyzed throughout 

the sequence. Moreover, separate pooled urine samples from the 

measured Nigerian and Austrian were repeatedly injected with a 

maximum of nine samples between the injection of the pooled 

urine samples to check the instrument performance. Solvent blanks 

(pure reconstitution solvent) and system blanks (200 μL water 

extracted according to the sample preparation protocol) were 

measured to correct for contaminations in the system and during 

the sample preparation. 

LC-HRMS(/MS) analysis 

To optimize chromatographic separation for our highly diverse set 

of endogenous and exogenous analytes, a Vanquish Duo UHPLC 

system with two independent pumping systems and two different 

columns was used. Different column/eluent systems were 

examined. As reverse-phase column (RP), an Acquity HSS T3 (1.8 

μm, 100 x 2.1 mm) was used. For HILIC chromatography, two 

different hydrophilic interaction liquid chromatography columns 

(HILIC) were used, namely, a SeQuant®ZIC®-pHILIC (5 μm, 

polymeric, 150 x 4.6 mm) and an Acquity BEH Amide (1.8 μm, 100 

x 2.1 mm) were tested. Eluent B was in all cases 100% ACN. The 

aqueous eluent (solvent A) was changed as stated in Table 1. The 

injection volume was 5 μL for all columns and experiments. 

For the RP measurements the gradient was as follows: 0 - 1 min, 

constant flow at 10% B; 1 - 10 min, increase to 70% B; 10 - 11 min, 

rise to 100% B and 13.5 - 15 min, equilibration at 10% B. A 

hydrophilic interaction liquid chromatography column (HILIC), 

SeQuant®ZIC®-pHILIC (5 μm, polymeric, 150 x 4.6 mm) was 

operated with the following gradient: 0-1 min, constant flow at 75% 

B; 1-6 min, linear decrease to 50%; 6-7 min, drop to 30% B; 7-11 

min, constant follow at 30%; 11-15 min, equilibration at 75% B. 

Both columns were at 40 °C and a flow rate of 0.3 mL/min was set. 

The Acquity BEH Amide was operated with a slightly different 

gradient as follows: 0-2 min, constant at 80% B; 2-8 min decrease 

to 40% B; 8-10 min, constant at 40% B and 10-15 min, equilibration 

at 80% B. Both capillaries were connected with a T-piece to mix the 

effluents before introduction into the ESI source of the mass 

spectrometer (Figure 1A). As needle wash, 75% ACN was used for 

the HILIC measurement, while for the RP run H2O:ACN:MeOH 

(2:1:1,v:v:v) was applied. 

Measurements were conducted in fast polarity-switching full scan 

mode on a Q Exactive HF quadrupole-Orbitrap mass spectrometer. 

The settings of the ESI interface were as follows: sheath gas, 48 au; 

auxiliary gas, 11 au; sweep gas flow, 2 au; capillary voltage, 3.5 kV 

(positive), 2.8 kV (negative); capillary temperature, 260°C; auxiliary 

gas heater, 410°C.  The scan range was from 65 to 900 m/z. For full 

scan only measurements the resolution was set to 60,000 with an 

AGC target (automatic gain control) of 1 x 106 and a maximum 

injection time of 200 ms. The instrument was calibrated before the 

analysis. 

Following the optimization of chromatographic conditions, the 

most suitable RP/HILIC combination was selected, consequently 

the above-mentioned parameters of combination two (Figure 1B) 

were applied for the sample measurement. A mixture of both 

effluents entered the mass spectrometer via the ESI source (Figure 

1C). For analyses with data-dependent MS2 a resolution of 60,000 

with an AGC target of 1x106 and a maximum injection time of 100 

ms were chosen for the full scan. The settings for the MS2 collection 

were the following: resolution, 30,000; AGC target, 1 x 105; 

maximum injection time, 50 ms, loop count, 10; isolation window, 

1.0 m/z; normalized collision energy, 30 eV; minimum AGC, 8x103; 

dynamic exclusion, 4 s. Iterative exclusion lists were generated with 

IE-Omics (Koelmel et al. 2017). The urine samples from Nigeria and 

Austria were analyzed in randomized order. 

Data Analysis 

Skyline (version 20.2.0.286, (MacLean et al. 2010)) was used for 

targeted analysis and quantification. Internal standard correction 

was performed. If for the specific analyte no internal standard was 

included, the internal standard with the closest retention time was 

selected as surrogate standard for normalization (Table S7). The 

linear calibration curves (Table S7) were 1/x weighted. Matrix 

matched calibration for urine and plasma was performed and the 

Table 1 Optimization design of the tested column/eluent systems for the dual approach 

 Combination 1 Combination 2 Combination 3 Combination 4 

 RP 

Column Acquity HSS T3 

Aqueous eluent 0.6 mM NH4F in H2O 0.3 mM NH4F in H2O 1 mM NH4F in H2O 0.6 mM NH4F in H2O 

Organic eluent ACN 

 HILIC 

Column SeQuant®ZIC®-pHILIC Acquity BEH Amide 

Aqueous eluent 10 mM NH4HCO3 (pH 9.2) 

in H2O /ACN (9:1, v:v) 
2 mM NH4F in H2O 1 mM NH4F in H2O 

50 mM CH3COONH4 (pH 

6) in H2O 

Organic eluent ACN 

corresponding calibration curves were used for quantification of 

xenobiotics. However, endogenous metabolites were, as expected, 

frequently highly abundant in the matrices, therefore solvent 

calibration was applied for endogenous metabolites (excluding 

estrogens). Limit of detections (LODs) were determined based on 

the EURACHEM guideline (Ellison et al. 2012) as three-times the 

standard deviation of the multiple injection of a low-concentrated 

standard (n=6) divided by the square-root of the number of 

replicates. For the limit of quantification (LOQ) the tenfold standard 

deviation was used.  
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Spearman correlation was calculated for compounds positive in at  

least 20% of all Nigerian samples with R and plotted with the 

corrplot package (version 0.90) (Wei et al. 2017).  For pathway 

analysis MetaboAnalyst 5.0 (Pang et al. 2021)was used. A 

hypergeometric test was selected as enrichment method and for 

topology analysis relative-betweenness centrality. The pathway 

library was Homo sapiens (KEGG). 

The pooled Nigerian urine sample including MS2 data measured in 

negative and positive ionization mode with iterative exclusion lists 

(n=4) was used to screen for potential additional xenobiotics not 

covered by the targeted evaluation using authentic reference 

standards. Suspect screening was perfomed in R applying the

 
Figure 1 Dual column setup (A) LC-HRMS system comprising two separate LC-pumps and columns combined by a T-piece before entering 

the mass spectrometer. (B) Gradients of both individual columns. (C) Eluent composition entering the mass spectrometer after the 

effluents were mixed 

 

patRoon package (Helmus et al. 2021). Solvent blanks (only in the 

corresponding polarity) were defined as blank measurements. The 

raw data files were converted to mzML-files and centroided with 

ProteoWizard (Chambers et al. 2012). For peak picking and 

grouping the “openms” algorithm was set with the following 

parameters: noise threshold: 4E3, chromFWHM: 3, minFWHM: 1, 

maxFWHM: 30, chromSNR: 5 and mzPPM: 3. Only features with a 

minimum absolute feature intensity of 3E5, a minimum feature 

intensity above blank of 10, present in at least 60% of replicates 

were kept and blank analyses were removed after this step. A 
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suspect list from the ENTACT trial (Sobus et al. 2019) based on the 

EPA’s ToxCast library including > 4000 substances was adopted for 

this experiment. Analytes which had already been included in the 

targeted list were removed to avoid redundancy. For the suspect 

screening a m/z window of 0.002 was set. MS peak list data was 

extracted with the mzr-algorithm (precursor m/z window: 0.5) and 

filtered (relative intensity threshold: 0.02, top 10 MS/MS peaks). 

Then molecular formulas were generated considering [M+H]+ and 

[M-H]- adducts respectively and the elements C, H, N, O, P, S, Cl, Br 

using genform. Chemical compounds were annotated with metfrag 

and the comptox database. With annotateSuspects and the 

generated peak lists, formula and compound data the suspect 

screening results were refined. An identification level was assigned 

depending on the rank and scores (isoScore, individualMoNAScore) 

of formula/compound candidates roughly based on Schymanski et 

al. (2014). The default settings in the annotateSuspects algorithm 

were applied. As no retention time data was available, level one 

identifications were not possible. The other identification levels 

were: level 2a (good MS/MS library match, top ranked in compound 

results, individualMoNAScore ≥ 0.9, no MoNA library score for 

other candidates), level 3a (fair library match, 

individualMoNAScore ≥ 0.4), level 3b (known MS/MS match, at 

least three fragments match), level 3c (good in-silico MS/MS match, 

annotation MS/MS similarity (annSimComp) ≥ 0.7), level 3c (good 

formula MS/MS match, top ranked formula candidate, annSimForm  

≥ 0.7, isotopic match (isoScore) ≥ 0.5, both scores at least 0.2 higher 

than next best ranked candidate), level 4b (good formula isotopic 

pattern match, top ranked formula candidate, isoScore ≥ 0.9, score 

at least 0.2 higher than next best ranked candidate) and level 5 

(nothing of the above mentioned criteria match). 

RESULTS & DISCUSSION 

Establishing a dual column approach for combined exposure & 

effect analysis 

Selection of columns and eluents 

In optimization experiments different eluent-column combinations 

were tested for the best overall performance and compatibility. 

Only eluents with a basic (pH 9.2) to slightly acid pH (pH 6) were 

combined with NH4F to avoid the formation of hydrofluoric acid. 

For a representative selection of selected compounds (25 

metabolites on the HILIC column and 25 xenobiotics on the RP 

column) the averaged peak area (n=4-6) in a matrix-matched 

standard (urine) and a solvent standard both at a medium 

concentration level (level 6) were compared between the 

combinations (Figure 2 and Table S4). Peak areas were normalized 

to the best combination for each analyte to simplify comparison. 

Endogenous metabolites are naturally abundantly present in urine, 

therefore the peak areas in the standard-spiked urine were 

increased compared to the solvent standards. For xenobiotics, the 

observed signal was mostly decreased due to signal suppression in 

the urine matrix. The averaged peak areas of the selected 

metabolites showed that the combination of 2 mM NH4F/ACN on 

a SeQuant®ZIC®-pHILIC column (HILIC) and 0.3 mM NH4F/ACN on 

an Acquity HSS T3 is favourable (highest peak area) in solvent. 

However, the difference to the three others is only minor with 

combination 2 reaching about 85% of the average peak area of 

combination 1. In urine, the average peak area of combination 4, 

which uses an Acquity BEH amide column instead of a SeQuant ZIC-

pHILIC column, is only about half of the others. Except for 

combination 4, all eluent-column combinations performed similar, 

but with combination 2 and 3, both using NH4F as additive, up to 

four metabolites (choline, phosphocreatinine, citric acid, 3-

methylcytidine) were not detectable at the chosen concentration 

level, therefore the SeQuant ZIC pHILIC column with a basic NH4CO3 

buffer based on Schwaiger et al. (2019) seemed to be the best 

choice regarding endogenous metabolites excluding estrogen 

hormones. When xenobiotics and endogenous estrogens were 

investigated, however the additive NH4F clearly outperformed the 

basic buffer. The average peak area in urine and solvent of this 

group nearly doubled when NH4F was used. Since xenobiotics are 

generally less concentrated than metabolites in real-life samples, 

we decided to use this additive to boost their sensitivity and finally 

selected the combination with 2 mM NH4F as aqueous HILIC eluent 

and 0.3 mM NH4F as aqueous RP column due to a better overall 

performance. 

Long term stability of LC-MS setup 

A solvent QC sample containing endogenous metabolites at 1 µM 

and xenobiotics at approximately 100 ng/mL was injected 

throughout the sequence (n=11) spanning over a period of 40 h. 

Only the most abundant ion species was considered. For 

endogenous metabolites the peak from the HILIC column and for 

xenobiotics the peak from the RP column was evaluated. At the 

chosen concentration level, 113 out of the 146 metabolites (77%) 

retained with a retention time bigger than 1 min on the HILIC 

column and 104 out of the 106 xenobiotics (98%) with retention on 

the RP column (retention time > 0.8 min) were detectable. Four 

analytes were not detectable even at higher levels, therefore the 

best ionization mode remains unclear. The relative standard 

deviation (RSD) was calculated for the peak area and the retention 

of all detectable molecules at this level (Figure 3A and 3B). The 

median RSD of the area was 21.7% and 31% in negative and positive 

ionisation mode, respectively. The difference between peaks from 

the HILIC and RP separation was minor, but in positive ionisation 

mode the relative standard deviation was bigger. Regarding 

retention time the median RSD was 0.4% for negative mode and 

0.7% for positive mode. The xenobiotics’ retention times were 

more stable with a median of 0.3% compared to 1.3% for the 

endogenous metabolites. 

The recoveries ranged in solvent between 83% and 123% with an 

average of 104% for xenobiotics and 81% and 119% with an average 
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Figure 2 Comparison of the average peak areas of selected, representative endogenous metabolites (A) and xenobiotics including estrogen 

hormones (B) in solvent and urine including a detailed overview of the averaged peak areas (n=4-6) relative to the highest peak area of 

the individual molecule. The best combination is shaded in grey. Different columns, namely Acquity HSS T3 (HSS), SeQuant®ZIC®-pHILIC 

(ZIC), Acquity BEH Amide (BEH), and eluents, namely 0.3/0.6 /1/2 NH4F in H2O (0.3/0.6/1/2 mM NH4F), 10 mM NH4HCO3 (pH 9.2) in 

H2O/ACN (9:1, v:v) (10 mM NH4HCO3), 50 mM CH3COONH4 (pH 6) in H2O (50 mM HAc) were tested 

 
of 101% for endogenous metabolites (Table S19/Table S20). 

Furthermore, the extraction recoveries were evaluated in spiked 

urine and plasma samples. The median recovery of xenobiotics was 

97% in urine and 103% in plasma whereas for metabolites these 

figures were determined to be 97% and 99%, respectively. Only 

10% of the analytes in urine and 14% in plasma, had a recovery 

below 80%. The recoveries were above 120% for about 1% of 

compounds in urine and 3% in plasma. Several analytes, especially 

endogenous metabolites, were already present in high quantities 

in the non-fortified urine and plasma, hence the extraction 

recovery was not estimated for all compounds. 

Pooled quality control samples of both sample sets were measured 

several times throughout the measurement (Figure S2). The 

relative standard deviation of the retention time and the 

normalised peak area was calculated for highly diverse analytes. 

This included Bisphenol A (BPA), daidzein, enterodiol, glycitein, 

methylparaben and triclosan in the pooled urine of the Nigerian 

samples (n=9) and BPA, daidzein, nonylphenol and p-
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hydroxybenzoic acid in the pooled urine of the Austrian samples 

(n=5). In addition, four metabolites (tryptophan, uracil, fumaric 

acid, gluconate) were investigated. The relative standard deviation 

of the retention time was < 1.5% for all analytes except fumaric acid 

(about 2.8%). The relative standard deviation of the normalised 

area was < 20% for all analytes except for BPA (22%), which was 

only at a concentration around the LOD in the Austrian pooled urine 

sample. The variation tended to be lower if the corresponding 13C-

labelled compound was available for compound-specific internal 

standardization (e.g. for methylparaben) as compared to surrogate 

internal standardization. 

Quantification of reference material 

The limits of detection for the xenobiotics ranged from 0.01 to 5.7 

ng/mL with a median of 0.08 ng/mL in solvent (Table S5, Figure 4C). 

In matrix the median LOD increased to 0.7 (urine, Figure 4A) and 

0.5 (plasma, Figure 4B) most likely due to matrix effects and matrix 

interferences. Phytoestrogens like daidzein 

Figure 3 Repeatability and accuracy reported as the number of analytes within a certain relative standard deviation of A) peak area and B) 

retention time. The lines mark the thresholds and the labels indicated how many analytes fall below a respective RSD percentage. Only 

the most abundant ion species was considered on the respective column. C) Analytes reported in SRM3672 and D) in SRM1950 with the 

grey line indicating the certified reference value and the expanded uncertainty according to the certificate of analysis 
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and genistein and personal care product ingredients e.g., parabens 

exhibited the lowest LODs. The LODs were for most xenobiotics 

sufficient to detect them in averagely contaminated samples 

considering concentration levels from published human 

biomonitoring studies. For example, published paraben levels in 

urine exceed 100 ng/mL for methylparaben and 20 ng/mL for 

propylparaben in several human biomonitoring studies (Wei et al. 

2021), which is more than 100-times the LOD value of the reported 

method. The analysis of bisphenol levels in U.S. urine samples 

showed levels of 0.4 -2 ng/mL BPA, 0.15-0.5 ng/mL BPF and <0.1-

0.25 ng/mL BPS (Ye et al. 2015), making the detection of BPS and 

BPF difficult, but BPA was detected at a concentration above our 

method’s LOD. Mycotoxins were reported to be present in Nigerian 

urine samples at an average concentration of 0.75 ng/mL (ZEN) and 

0.06 ng/mL (AOH) (Šarkanj et al. 2018). The average levels of these 

mycotoxin were just slightly above our calculated LOD. However, 

these toxins would be detectable in medium to highly 

contaminated samples. For triclosan mean concentrations of 28.6 

ng/mL were detected in urine from the USA, Greece, and Asian 

countries (Iyer et al. 2018). In Israeli urine the mean detected 

concentration was 28.9 ng/mL for monobutyl phthalate, 12 ng/mL 

for MEHP, 0.17 ng/mL for 1-OH pyrene, 26.9 ng/mL for genistein 

and 66.8 ng/mL for daidzein (Berman et al. 2013). Besides 1-OH-

pyrene, the pesticide triclosan, plasticizers and phytoestrogens 

were reported in concentration ranges covered with our approach.  

The linear dynamic range was highly variable and depended on the 

molecule (Table S19). About 10% of the xenobiotics had a linear 

range spanning five orders of magnitude. Half of them covered a 

range of four, and approximately a third a range of three orders of 

magnitude in solvent. Matrix-matching resulted typically in a 

reduction of the dynamic range of about one order of magnitude 

due to matrix effects as the LOD of the xenobiotics in matrix was 

generally lower.  

The solvent LOD of endogenous metabolites ranged from 0.001 µM 

to 6.6 µM with a median of 0.04 µM (Table S6, Figure 4D). The LOD 

values were estimated for 134 analytes including several jointly 

evaluated isomers. The LOD of several endogenous metabolites 

was not estimated in the human matrices due to their high natural 

abundance. About one third of all compounds showed LODs < 0.01 

µM and about two thirds < 0.1 µM allowing for the straight-forward 

(semi-) quantitative assessment of the metabolome in most 

biological systems. The reference standards spanned five orders of 

magnitude from 0.001 µM to 10 µM. However, most metabolites 

were not detectable at the lower calibration level (0.001 µM – 0.01 

µM) limiting the linear dynamic range to four (45%), three (29%) or 

even less (8%) orders of magnitude (Table S20). 

Limitations 

Out of the 146 endogenous metabolites present in the standard 

mix, five (1-methylnicotinamide, thiamine, choline, spermine and 

spermidine) were not detectable even at the highest concentration 

level (10 µM). Isomers were not separated in some cases. These 

included 2-/3-phosphoglyceric acid, citric /isocitric acid, 

homoserine/threonine and isoguanosine/guanosine. The hexoses 

fructose, galactose, mannose, glucose and inositol were not 

distinguishable as well as their phosphates (fructose-6-phosphate, 

glucose-1-phosphate and glucose-6-phosphate) as they were co-

eluting and therefore the peaks were not baseline separated. 

Pentose-phosphates, ribose-5-phosphate and ribulose-5-

phosphate were not baseline separated, too. For arginine and 

palmitic acid no satisfactory linear regression was possible most 

likely due to severe carry-over effects. 

Six analytes for which certified reference values are available in 

SRM3672 (Organic Contaminants in Smoker’s Urine) were detected 

and quantified (Table S13). As the values stated in the certificate 

were total analyte concentrations after hydrolysis, β-

glucuronidase/arylsulfatase-treated reference urine was analyzed. 

The relative error compared to the reference value was < 20% for 

all of these (Figure 3C). 1-OH-pyrene and MEHP were not detected, 

although they are present in the smokers’ urine due to their low 

concentration below the method’s quantification limits. Besides 

several amino acids, PFOA and PFOS were quantified in SRM1950 

(Metabolites in Frozen Human Plasma) and compared to the 

certificate (Figure 3D, Table S14). Threonine was not evaluated as 

it coeluted with homoserine and therefore only a combined value 

for both amino acids was available. Isoleucine and leucine were not 

baseline separated as well, but for both molecules reference values 

were given, therefore the sum of both concentrations was 

compared. The relative error was < 26% for all amino acids, 

whereby the recoveries were in general lower for the high 

abundance amino acids (glycine (75%), alanine (82%), 

isoleucine/leucine (74%)), possibly due to saturation effects as the 

values were outside of the calibration range (Figure 3D). The 

samples were injected undiluted to ensure a high detectability of 

low-concentrated xenobiotics despite possible saturation issues for 

the endogenous metabolites at higher concentrations. The relative 

errors of PFOA and PFOS were even < 5% and < 20%, respectively. 

In general, the determined values were in good agreement with the 

reference values of both SRMs especially given the extremely broad 

scope of the new workflow with recoveries ranging from 74% to 

124% in SRM1950 and recoveries between 81% and 115% in 

SRM3672 (Figure 3C). These recoveries are similar to values 

reported in literature for SRM3672 by Karthikraj et al. (2020) 

(80.5% - 105%) and Zhu et al. (2021) (80 – 111%). 

In the reference materials, several additional metabolites and 

xenobiotics were quantified (Figure S3, Table S16). In SRM3672, 18 

xenobiotics and two estrogens were detected. SRM1950 was 

contaminated with 17 xenobiotics with nine of them being 

detected in both reference materials including personal care 
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Figure 4 Limit of detection (LOD) of representative xenobiotics and estrogens in urine (A), plasma (B) and neat solvent (C) sorted by 
compound classification. The values were plotted on a logarithmic scale. D) Number of endogenous metabolites in a specific LOD range. 
The colour indicates the category to which the analytes can be classified to 
 
product ingredients (methylparaben, propylparaben, p-

hydroxybenzoicacid, benzophenone-1), phytoestrogens (genistein, 

daidzein), smoking markers (cotinine, trans-3-OH-cotinine) and an 

industrial side product (2-naphthol). In SRM3672 additional 

phytoestrogens (e.g. enterolactone, enterodiol, daidzein, glycitein), 

a plasticizer (mono butyl phthalate) and butylparaben were 

observed, whereas in SRM1950 scopolamine, a phytotoxin, 

perfluorinated substances (PFOA, PFOS), industrial side products 

(nonylphenol, 4-tert-octylphenol) and other plasticizers (BPS, BPA) 

were found. The quantified metabolome comprised 48 (SRM1950) 

and 61 (SRM3672) additional compounds, respectively. Smoker’s 

urine was not enzyme treated for the evaluation. Mainly amino 

acids, nucleobases and nucleosides were quantified in these 

samples. The concentrations ranged over four orders of magnitude 

for metabolites in the urine plasma reference material. When 

expanding to exogenic contaminants this range spanned even over 

six orders of magnitude. In the urine reference material 

concentrations were less variable covering three orders of 

magnitude.
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Figure 5 Detection of xenobiotics in Nigerian samples. A) Variety of observed xenobiotics and their classification. B) Individual 

concentrations of selected analytes that have been detected in > 50% of the samples (n=77). The human biomonitoring (HBM) guidance 

value (Ougier et al. 2021) was added in red. C) Extracted ion chromatograms (XICs) of selected analytes including corresponding MS2 

spectra of experimental samples and authentic reference standards. D) Variation of analyte concentration in six individuals for selected 

xenobiotics demonstrate severe exposure dynamics and the need for longitudinal sampling design



 11 

Application in biomonitoring studies from Europe and Sub-

Saharan Africa 

The established analysis pipeline was applied in proof-of-principle 

studies of two different urine sample sets from geographically 

different areas, Austria and Nigeria. Both studies included several 

individuals (Austria (4) and Nigeria (23)), who donated samples at 

four different time points. In the Austrian samples 17 different 

xenobiotics belonging to four compound categories were identified 

(Figure S5A/B, Table S10). Most exposures were either personal 

care product ingredients or phytoestrogens. The Nigerian urine 

samples were contaminated with more than twice as many 

chemicals (n=48) coming from diverse sources (Figure 5A, Table S9), 

but personal care product ingredients and phytoestrogens were 

still the dominant classes. Concentrations covered five orders of 

magnitude from the sub-ppb to the ppm range. The Nigerian 

samples were contaminated with a wider diversity of chemicals 

including air pollutants (1-OH-pyrene), mycoestrogens (ZEN, AME) 

and industrial side products (2-naphthol) and higher concentration 

levels. In particular the maximum values were frequently 10-100-

times higher compared to the Austrian samples. However, 

especially the Austrian dataset was small and homogenous, 

therefore the available data is not sufficiently representative to 

estimate population-wide exposure levels. The Austrian samples 

were considered as low-exposure scenario, whereas the Nigerian 

samples were regarded as high-exposure samples as often 

food/environmental safety regulations are lacking or not 

adequately enforced. Each detected xenobiotic was on average 

detected in 31 out of 77 Nigerian samples. Four analytes 

(enterolactone, BPA, nonylphenol and propylparaben) were 

present in > 90% of all samples (Figure 5B). In the Austrian samples, 

two thirds were contaminated with daidzein, 4-tert-octylphenol, 

BPA and propylparaben, besides the in all samples detected 

nonylphenol and dibutyl phthalate. MS2 spectra further supported 

identification (Figure 5C), although for all analytes discovered here 

reference standards were used for retention time confirmation. 

The number and level of the detected phytoestrogens was 

restricted due to the regulated diet with no vegetable and fruit 

intake except for a smoothie on day 2 before the Austrian study and 

on the first two study days. Approximately 70 diverse endogenous 

metabolites were quantified in the urine samples of both studies 

(Table S11, Table S12). Thirteen individuals completed the full 

longitudinal sampling with four timepoints. The variation over the 

timeframe of two days is exemplary depicted for six individuals and 

analytes of distinct origin including the plasticizer bisphenol A, the 

phytoestrogen genistein, the personal care product ingredient 

propylparaben and the air pollutant 1-OH-pyrene in Figure 5D. The 

concentrations spanned over three orders of magnitude within the 

sample individual. Genistein and propylparaben differed vastly 

between the timepoints in particular. The intraindividual variation 

was like the interindividual variation demonstrating the importance 

of longitudinal sampling for exposure assessment for several 

participants. The diversity and high dynamic of the exposome even 

within the same individual was described previously (Jiang et al. 

2018)and further supports the need for time-resolved testing to 

capture dynamic exposure in spot urine samples or 24 h urine. 

To showcase the power of our approach for investigating the 

impact of exogenous exposures on the endogenous metabolite, a 

spearman correlation matrix was created. Various significant 

correlations between xenobiotics but also xenobiotics and 

metabolites were demonstrated (Figure S4). Mainly analytes which 

were detected in a multitude of samples, e.g., mono butyl 

phthalate, ethyl paraben, MEHP, benzophenone and enterolactone, 

yielded significant correlations, probably due to the higher 

statistical power. High correlation coefficients were observed for 

monobutyl phthalate and MEHP (0.72), ethyl paraben and p-

hydroxybenzoic acid (0.64), benzophenone-1 and enterolactone 

(0.74), and propylparaben and methylparaben (0.59). MEHP and 

monobutyl phthalate are both urinary biomarkers of phthalate 

exposure with estrogenic potential (Wenzel et al. 2018). The 

preservatives ethyl paraben and p-hydroxybenzoic acid were likely 

to be an ingredient in the same type of personal care products and 

also methylparaben and ethyl paraben may be present in similar 

products. Enterolactone, a biotransformation product of plant 

lignans originating from e.g. flaxseeds and sesame (Axelson et al. 

1982), and the urinary biotransformation product of 

benzophenone-3, benzophenone-1, a UV-filter used in cosmetics 

(Kang et al. 2019), clearly have different sources. However, both are 

hormonally active and have a shared mechanism concerning 

obesity antagonism. This was demonstrated to be associated with 

late on-set of puberty in girls (Wolff et al. 2015). 

The link between external exposures and the ensuing disturbance 

of the internal metabolome is one step to elucidate disease 

development, which is part of the broad scope of exposome 

research. With our approach connections between xenobiotics and 

metabolites were indicated. A strong correlation between ethyl 

paraben and the carboxylic acids fumaric acid (0.68) and malic acid 

(0.67) and the amino acid alanine (0.62) were uncovered. Alanine 

(0.64), fumaric acid (0.63) and malic acid (0.6) were connected to 

benzophenone-1, too. The matrix also strongly correlated mono 

butyl phthalate and aspartic acid (0.66).  

Phthalate exposure was associated with altered carnitine levels and 

changes in metabolites associated with amino acid metabolism in 

urine of Chinese men (Zhang et al. 2016). In our study, carnitine, 

propionylcarnitine and several amino acids were correlated with 

mono butyl phthalate, too. Pathway analysis was performed for 

significantly correlated metabolites with mono butyl phthalate 

(Figure S6). The results revealed a strong impact on the alanine, 

aspartate and glutamate metabolism, the arginine biosynthesis, 

and the citrate cycle. The pathway analysis of with ethyl paraben 

associated metabolites exposed similar results with arginine 

biosynthesis and alanine, aspartate and glutamate metabolism 

being the most impacted pathways (Figure S7). These two 

pathways were also the most affected among with benzophenone-

1 correlated metabolites (Figure S8). The xenobiotics 

benzophenone-1, mono butyl phthalate and ethyl paraben had at 

least a moderate correlation (correlation coefficient between 0.5 

and 0.64) among each other, therefore the disturbance in amino 

acid metabolism might not be triggered by a single compound but 

rather by a mixture of different chemicals. 

Recent studies demonstrated the feasibility of exposome-wide 

association studies (ExWAS), e.g. extensive effect biomarker and 

biomarker discovery of air pollutant exposure (Tang et al. 2021) and  

linking metabolic profiling and exposure to perfluoroalkyl 
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substances (Alderete et al. 2019). However, to capture the 

metabolome and the chemical exposome several independent 

measurements were required, increasing the measurement time 

compared to our 15 min LC-HRMS/MS run covering both polar 

metabolites and the primarily apolar xenobiotics. Especially 

molecules with a high vapor pressure and low boiling/melting point 

were not accessible with LC-MS technology, therefore GC-MS 

would need to be integrated to further extend coverage (Ulrich et 

al. 2019; Hu et al. 2019). Although our fast LC-MS approach might 

be advantageous regarding run time, the vast concentration 

difference between endogenous metabolites and environmental 

contaminants (Bloszies et al. 2018) hamper their simultaneous 

measurement as several endogenous metabolites were close to the 

detector saturation and low abundant xenobiotics still need higher 

sensitivity. In particular, quantification posed a challenge, as 

calibration ranges were partially exceeded. Internal standard 

correction eased linearity issues especially at high concentrations. 

Suspect screening in biological samples obtained from 

Nigerian women 

To demonstrate the workflow’s suitability for suspect and non-

targeted screening/analysis (NTS/NTA), raw data from four pooled 

Nigerian urine samples with iterative MS2 exclusion lists were 

processed for suspect screening. On average 14,126 and 18,408 

features were picked in each sample in negative mode and positive 

mode, respectively. 16,288 negative features in 4,590 groups 

remained after removal of features present in the blank and 

application of an intensity and replicate abundance filter. In 

positive ionization mode 21,384 features in 5,937 groups remained 

after filtering. Features were included if they were present in at 

least 3 out of 4 replicates, therefore the feature number after the 

application of the filter was higher than in the individual sample. 

For 706 (positive) and 749 (negative) peaks a match with the 

suspect list was found. The suspect list contained several isomers, 

therefore in some cases various molecules were suggested as 

annotation. Altogether, 1,238 different compounds, partly 

observed in both ionization modes, were proposed as potential 

annotations for the feature groups. Identification levels 1-4 were 

established for 52% (370) and 58% (435) in positive and negative 

ionization mode, respectively (Table S17 and Table S18).  MS2 

matches (level ≥ 3c) were obtained for 187 (positive mode) and 190 

(negative mode) feature groups. The annotation of 377 feature 

groups in both ionization modes with an identification level of at 

least 3c was successful, consequently showcasing the workflow’s 

ability to not only detect analytes with available reference 

standard, but also to capture additional compounds potentially 

present in the samples.  

CONCLUSION 

The presented workflow facilitates the rapid and simultaneous 

exploration of complex environmental exposures and their effect 

on the human metabolome. Despite issues due to the wide 

concentration range, the quantification of several endogenous 

metabolites and exogenous chemicals acquired simultaneously in 

one short LC-MS/MS run succeeded and correlations between 

metabolites and chemicals were revealed. Consequently, the effect 

of certain exposures on the metabolome were directly derived 

from exposure data in a so far unique way. Combining two columns 

and both ionization modes in one single datafile drastically 

decreased measurement time and simplified data evaluation and 

storage requirements. For the deciphering of the exposome 

hundreds to thousands of samples will be needed to be analyzed, 

therefore the reduced analysis time opens up for so far unseen 

throughput in exposome-wide association studies for drawing 

reliable conclusions on the impact of environmental factors on 

disease development. 
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